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36 Abstract

37 Community occupancy models estimate species-specific parameters while sharing 

38 information across species by treating parameters as sampled from a common distribution. When 

39 communities consist of discrete groups, shrinkage of estimates towards the community mean can 

40 mask differences among groups. Infinite mixture models using a Dirichlet process (DP) 

41 distribution, in which the number of latent groups is estimated from the data, have been proposed 

42 as a solution. In addition to community structure, these models estimate species similarity, which 

43 allows testing hypotheses about whether traits drive species response to environmental 

44 conditions. We develop a community occupancy model (COM) using a DP distribution to model 

45 species-level parameters. Because clustering algorithms are sensitive to dimensionality and 

46 distinctiveness of clusters, we conducted a simulation study to explore performance of the DP-

47 COM with different dimensions (i.e., different numbers of model parameters with species-level 

48 DP random effects) and under varying cluster differences. Because the DP-COM is 

49 computationally expensive, we compared its estimates to a COM with a normal random species 

50 effect. We further applied the DP-COM model to a bird dataset from Uganda. Estimates of the 

51 number of clusters and species cluster identity improved with increasing difference among 

52 clusters and increasing dimensions of the DP; but the number of clusters was always 

53 overestimated. Estimates of number of sites occupied and species and community level covariate 

54 coefficients on occupancy probability were generally unbiased with (near-) nominal 95% 

55 Bayesian Credible Interval coverage. Accuracy of estimates from the normal and the DP-COM 

56 were similar. The DP-COM clustered 166 bird species into 27 clusters regarding their affiliation 

57 with open or woodland habitat and distance to oil wells. Estimates of covariate coefficients were 
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58 similar between a normal and the DP-COM. Except sunbirds, species within a family were not 

59 more similar in their response to these covariates than the overall community. Given that 

60 estimates were consistent between the normal and the DP-COM, and considering the 

61 computational burden for the DP models, we recommend using the DP-COM only when the 

62 analysis focuses on community structure and species similarity, as these quantities can only be 

63 obtained under the DP-COM. 

64

65 Key words: bird point-counts, clustering, community occupancy model, dimensionality, 

66 Dirichlet process, latent groups, infinite mixture models

67

68 Introduction

69 Occupancy models (MacKenzie et al. 2002) have rapidly gained popularity in wildlife research, 

70 because they offer a means of estimating ecologically relevant parameters (species occurrence, 

71 association with covariates, colonization/extinction rates) while accounting for imperfect 

72 detection (MacKenzie et al. 2017) using relatively inexpensive species detection/non-detection 

73 data. The basic single-season single-species occupancy model has seen many modifications, 

74 including the joint modeling of multiple species in a community modeling framework (Dorazio 

75 and Royle 2005). Community models share information across species while maintaining the 

76 ability to estimate species-specific parameters by assuming that all parameters come from a 

77 common distribution. This distribution, in turn, is governed by hyperparameters, which reflect 

78 community-level patterns or processes; this model formulation is equivalent to including a 

79 species-level random effect. The community modeling approach has been combined with single-

80 season (e.g., Zipkin et al. 2009, Sollmann et al. 2017) and dynamic (e.g., Dorazio et al. 2010) 

81 occupancy models, as well as with other hierarchical modeling frameworks such as distance 

82 sampling (Sollmann et al. 2016), or N-mixture modeling (Yamaura et al. 2016).

83 Choice of the specific distribution used to model species level parameters entails assumptions 

84 about how the community is structured. A common choice is the normal distribution, postulating 

85 that variation in parameter values across species can be described using a bell-shaped curve 

86 (Sauer and Link 2002, Kéry and Royle 2008, Zipkin et al. 2009). Particularly for data-sparse 

87 species, parameter estimates are pulled closer to the overall mean. Although the ability to derive 
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88 more precise parameter estimates for rarely observed species is a significant benefit of 

89 community models, this shrinkage of parameters towards the mean can mask effects that are 

90 present only in subgroups of the entire community (Pacifici et al. 2014). This problem can be 

91 circumvented by grouping species a priori and analyzing groups, rather than entire communities. 

92 This approach, however, reduces overall sample size and thus, precision of parameter estimates. 

93 Additionally, results can be sensitive to a priori grouping of species (Pacifici et al. 2014).

94 Finite mixture models, in which species are assigned probabilistically to a pre-defined number of 

95 latent groups, are an alternative to a priori grouping, and have been employed in a community 

96 modeling context (Dunstan et al. 2011, 2013). Building on the idea that communities consist of 

97 latent groups of species, Johnson and Sinclair (2017) proposed an infinite mixture approach for 

98 the joint modeling of multi-species abundance data using a Dirichlet process (DP) prior. In this 

99 approach, the number of clusters into which species group is unknown and must be estimated. 

100 Briefly, the DP consists of a base distribution from which cluster-specific parameter values are 

101 generated, and a concentration parameter α, which determines the amount of clustering. In the 

102 context of community models, species are allocated to clusters based on cluster probabilities, 

103 which are generated with an algorithm governed by α (for details, see Methods). All species in a 

104 cluster share the same parameter value, which serves to reduce the number of model parameters 

105 (Escobar and West 1995). Compared to normally distributed random effects, this semiparametric 

106 approach also increases the flexibility to capture patterns in parameter distribution within the 

107 community of interest (Dorazio et al. 2008). In addition, the approach provides information on 

108 community structure (number of clusters in the community), as well as the degree of similarity of 

109 species (how often two species belong to the same cluster) (Johnson and Sinclair 2017). The 

110 ability to estimate the degree of similarity in how species occurrence responds to covariates 

111 holds potential to address questions of ecological and conservation interest: the degree of 

112 similarity among species with similar functional traits can be used to quantify a community’s 

113 response diversity, defined as the variation of responses to environmental change, which is a key 

114 determinant of ecosystem resilience (Mori et al. 2013). Further, estimates of similarity in habitat 

115 use can be contrasted with phylogenetic relatedness to investigate questions of coexistence and 

116 niche partitioning among closely related species, a topic of ongoing debate in ecology 

117 (Hutchinson 1959, Gotelli 2000, Graham et al. 2004).
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118 In clustering algorithms, the cluster identity of objects is estimated based on multivariate data 

119 measured for each object. Clustering algorithms identify cluster identity with greater accuracy 

120 when more dimensions (i.e., more variables) are used to describe objects, as long as added 

121 dimensions contain information about clusters (e.g., Azizyan et al. 2013). Further, clustering in 

122 high-dimensional data (with 100s or 1000s of dimensions) suffers from the “curse of 

123 dimensionality” – the fact that in high dimensional space, volume expands so rapidly that data 

124 appear sparse and dissimilar, causing common clustering algorithms to be inefficient (Bellman 

125 1957, Houle et al. 2010). Given the dependency of clustering algorithms on the dimensions of 

126 the data, the performance of a community model using a DP prior to cluster species likely also 

127 depends on the dimensions of the DP process. To our knowledge, the effect of dimensionality on 

128 the ability of the DP to recover information on clustering of and similarity among objects has not 

129 been explored in the context of ecological modeling. 

130 In this study, we develop a community occupancy model (COM) with a multivariate DP 

131 distribution for species level parameters (DP-COM). Using a simulation study, we first assess the 

132 model’s ability to recover community structure (number of clusters and species similarity) and 

133 estimate parameters of ecological interest in occupancy modeling (number of sites occupied and 

134 coefficients describing the relationship between occupancy probability and environmental 

135 variables). We set up the simulation to test how the dimensionality of the DP and differences 

136 among clusters affect these estimates. We then apply the DP-COM to bird survey data from 

137 Murchison Falls National Park, Uganda, to illustrate the modeling approach and its ability to 

138 address questions of species similarity. Finally, because DP priors are computationally expensive 

139 (Johnson and Sinclair 2017), tradeoffs between their use and traditional normal random effects 

140 models should be considered. We therefore compared accuracy of estimates from the DP-COM 

141 with that of a COM using a customary normal random species level effect (normal COM). 

142

143 Methods

144 Model development

145 Under the hierarchical formulation (Royle and Dorazio 2008) of single-species single-season 

146 occupancy models (MacKenzie et al. 2002), whether or not a site j is occupied by the species of 

147 interest, zj, is a Bernoulli random variable governed by occupancy probability ψ, which can be 

148 modeled as a function of site-specific covariates on an appropriate link scale f (for example, logit 
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149 or probit): 

150 ��~���������(��)
151 �(��) = �′��
152 Here,  is a vector of regression coefficients and  is a vector with measures of the � �′�
153 corresponding site-level covariates for site j. Sites are visited on k occasions, and binary 

154 observations of the focal species, yjk, are treated as Bernoulli random variables governed by the 

155 detection probability p, which is conditional on the latent true occupancy state zj and either 

156 adopts the value pjk, when , or a value of 0 when . �� = 1 �� = 0

157 ���~���������(�����)
158 Analogous to ψ, p can be modeled as a function of both site and occasion specific covariates.

159 To extend this to a community occupancy model, the parameters and latent variables of the 

160 model described above are further indexed by species, i. Rather than treating species-level 

161 parameters as independent, we assume that parameters come from a common distribution, 

162 governed by community (or hyper-) parameters (Dorazio and Royle 2005, Dorazio et al. 2006). 

163 This model formulation constitutes a form of information sharing, which allows us to include 

164 species with sparse data into the analysis. 

165 A normal distribution is a common choice to describe species level parameters; however, this 

166 entails parametric assumptions of unimodality and symmetry in the community. In contrast, the 

167 semi-parametric DP allows fitting infinite mixture models that treat species as belonging to latent 

168 clusters and lets the data govern the specific cluster structure of the community. The DP consists 

169 of a base distribution, G0, which generates cluster-level parameters, and a concentration 

170 parameter α, which governs the amount of clustering. Under this formulation, the probability 

171 distribution for species-level parameters is a random draw from a DP [for a formal description of 

172 the DP, see Sethuraman 1994]. There are multiple means of implementing a DP; we opted for the 

173 Stick Breaking Algorithm (Sethuraman 1994), because it can be readily implemented in JAGS 

174 (Ohlssen et al. 2007). In the Stick Breaking Algorithm, cluster probabilities are generated using a 

175 sequence of auxiliary variables , with mean . The variable  can be �~Βeta(1,�) �(�) = 1/(1 + �) �
176 thought of as the proportion that is broken off a stick. The proportion  corresponds to the �1

177 probability of cluster 1, ;  is the proportion broken off the remaining stick, and can be �1 �2
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178 translated into  by scaling it back to the size of the original stick, , and so forth �2 �2 = �2(1 ― �1)

179 for the remaining clusters. The n species are then assigned to a cluster using a Multinomial(n, ) �
180 distribution. If α is large, only small pieces are broken off, leading to many clusters K and a 

181 distribution of species-level parameters that approximates G0. If α is small, large pieces are 

182 broken off, resulting in few clusters and a distribution of species-level parameters that can look 

183 very different from G0. 

184 It is common practice (though not exclusive) in community models to ascribe separate univariate 

185 hyperdistributions to each set of species-specific parameters. To take advantage of the 

186 relationship between the number of dimensions of multivariate data and the ability to identify 

187 clusters in the data, we followed Johnson and Sinclair (2017) and specified G0 in the DP-COM as 

188 a multivariate normal (MVN) distribution. Here, the MVN means correspond to the community 

189 hyperparameters , which determine the distribution of parameters across clusters. Rather than �
190 estimating the MVN means directly, we estimated them as separate fixed parameters and 

191 parameterized the MVN G0 in terms of deviations from the community mean effect, . This � ∗�
192 allowed us to center the MVN on 0 for identifiability (Johnson and Sinclair, 2017): 

193 � ∗� ~��(�0, �)
194 �0 = ���(�, Ω)

195 Note that this is equivalent to where  are cluster-level deviations from the ��~���(�,Ω), ��
196 community means. Species-level coefficients  can be derived as � ∗�
197 � ∗� = � + ��[�[�]],
198 where g[i] is the cluster identity of species i, estimated using the cluster probabilities generated 

199 under the Stick Breaking Algorithm.

200 The number of dimensions of the MVN and thus the DP is determined by the number of 

201 parameters that are modeled with random species effects. As an example, when the intercept and 

202 all coefficients for m covariates are modeled as having species-level random effects, then the 

203 multivariate DP for  has  dimensions. Occupancy models are composed of an � ∗� � + 1

204 observational (detection) and an ecological (occupancy) component, and researchers are likely 

205 interested in understanding species similarities with respect to each component separately (i.e., 

206 which species are ecologically similar vs which species are detected similarly). We therefore 
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207 specified separate DPs for each model component. Though not necessary, this choice also allows 

208 for efficient priors for  (see Simulation study below).��
209

210 Simulation study

211 To evaluate the effect of the dimensionality of the multivariate DP on the model’s ability to 

212 recover community structure, we set up a simulation study. We simulated occupancy and 

213 detection data for a community of  species, grouped into  clusters (10, 8, 6, 4 and 2 � = 30 � = 5

214 species per cluster) across  sampling locations and  sampling occasions. We held � = 35 � = 5

215 detection probability constant across species, sites and occasions at  but allowed for � = 0.24

216 cluster-specific intercepts and coefficients in the predictor of occupancy (not adding the DP 

217 structure to the detection component made the models run faster and thus made the simulation 

218 study viable). We considered 5 scenarios of dimensionality, using 0 to 4 predictor variables for 

219 occupancy, corresponding to  to 5 regression parameters (intercept and coefficient(s)) and, � = 1

220 therefore, dimensions of the multivariate DP. Predictor variables were simulated as independent 

221 random variables following a Normal(0,1) distribution and we modeled their effect on 

222 occupancy probability using a probit link function. We set community hyperparameters 

223 (intercept followed by covariate coefficients) . Following Johnson and � =  {0,1, ― 0.5, 0.5, ― 1}

224 Sinclair (2017), we modeled cluster-specific deviations from community level parameters, , as ��
225 a MVN(0, Ω), where ,  determines the amount of variation among cluster- Ω =  �2(�’�) ―1 �
226 specific coefficients and H is a matrix of predictors measured at each sampling site � × � 

227 (including an intercept term). This MVN corresponds to a g-prior (Tiao and Zellner 1964), which 

228 is often used for regression coefficients, because of its property that with a single parameter, , it �
229 controls the scale of variance and covariance based on the variance and correlation of predictor 

230 variables. 

231 Because it is intuitive and has been shown (Johnson and Sinclair, 2017) that the differences 

232 among clusters influence how well a DP model can reproduce community structure, we 

233 considered three levels of among-cluster variation,  = 1, 2 and 5, for each dimensionality �
234 scenario, yielding a total of 15 scenarios. We generated 50 data sets for each scenario, fitting the 

235 generated data to the above described DP-COM using the same covariates as the data-generating 

236 model. 
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237 We fit models in a Bayesian framework using a Beta(1,1) prior for p and priors suggested by 

238 Johnson and Sinclair (2017) for parameters of the DP component of the model, namely:

239 (1) for the DP concentration parameter α, a Gamma(a, b) prior where a and b are chosen 

240 depending on n so that , thus favoring smaller number of clusters (i.e., a more [�] ≈ 1/�
241 parsimonious model);

242 (2) for β, a MVN g-prior with  and , where  is the design matrix for � = 0  Σ = 10,000(�’�) ―� �
243 community-level effects and the specific multiplicative factor ensures sufficient variance to 

244 create a vague prior for our specific data.

245 (3) For ω, a scaled half-T distribution with φ=1 and df=1, which corresponds to a half-Cauchy 

246 prior distribution. 

247 We simulated and analyzed data using the software R version 3.5.1 (R Core Team 2018). We fit 

248 models in JAGS 4.3.0 (Plummer 2003), accessed through the R package jagsUI 1.5.0 (Kellner 

249 2019). We ran three parallel chains with 30,000 iterations of which we discarded 10,000 as burn-

250 in. We thinned chains by 10 to reduce output size. We used the posterior mean as a point 

251 estimate, except for the number of clusters (K) and the number of sites occupied by species i ( , ��
252 derived as ), for which we used the posterior mode (a more representative quantity in ∑�� = 1

���
253 skewed posterior distributions typical for positive integer variables with small values). From 

254 model output we derived species-specific occupancy coefficients . We further calculated � ∗�
255 pairwise species clustering rates as the proportion of MCMC iterations in which two species 

256 were estimated to be in the same cluster. This  matrix can also be viewed as a species � × �
257 similarity matrix with respect to occupancy coefficients. We used the similarity matrix to 

258 calculate true and false pairwise clustering rates: first, we constructed a species-by-species 

259 matrix from the simulated data, in which species pairs received an entry of 1 if they were in the 

260 same cluster, and an entry of 0 otherwise. Then, we calculated the average pairwise clustering 

261 rate from the model output for all true species pairs (i.e., pairs with an entry of 1 in the data 

262 matrix) as true clustering rate, and the average pairwise clustering rate for all false species pairs 

263 (pairs with an entry of 0 in the data matrix) as false clustering rate. 

264 We assessed convergence of parallel chains using the Gelman-Rubin statistic, R-hat (Gelman 

265 and Hill 2006). However, this statistic was not devised for a DP-type mixture model in which 

266 cluster labels switch (i.e., cluster 1 does not have the same identity throughout all iterations), and 
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267 as a result, cluster level parameters also switch. We were therefore more liberal in our 

268 assessment of convergence. We considered that we had achieved convergence when all structural 

269 parameters (α, ω, p, β) as well as all species-level coefficients, , had an R-hat value <1.5 and � ∗�
270 excluded iterations that did not meet this criterion. We inspected chain plots for several cases of 

271 1.1<Rhat<1.5 and found that generally, parallel chains fluctuated around the same average value, 

272 but that mixing was poor. Because these models are time intensive, we opted against running 

273 chains for more iterations, as this would have made the simulation study unfeasible.  

274 To evaluate the performance of the DP model under the different scenarios, we calculated 

275 median bias (absolute bias, , for β and , because true values were often close/equal to 0; � ―� � ∗�
276 relative bias,  for all other parameters), median coefficient of variation (CV; posterior (� ―�)/�
277 standard deviation divided by point estimate), median true and false clustering rates, and 95% 

278 Bayesian Credible Interval (BCI) coverage (percentage of iteration in which the 95% BCI 

279 included the true parameter value; henceforth just coverage) across all iterations that reached 

280 convergence. We used the median across iterations rather than the mean, because for some 

281 parameters, particularly the number of clusters K, the distribution across iterations was highly 

282 skewed, most likely due to poor identifiability particularly in scenarios with low ω and m.

283 To evaluate whether we lose accuracy in parameter estimates when using the normal-COM on a 

284 clustered community, we also ran a normal COM using the same data generated under the 15 

285 scenarios described above and compared median bias and CV of estimates of  and  between �� � ∗�
286 the two approaches. We used the same g-priors for β and  (which correspond to  in the �� � ∗�
287 normal COM where each species forms its own cluster) and half-Cauchy prior on ω, the same 

288 MCMC settings and applied the same convergence criteria as for the DP-COM.

289

290 Application: Bird survey data from Uganda

291 Avian point-count data were collected from Murchison Falls National Park (MFNP) in western 

292 Uganda. The park covers nearly 4,000 km2 in East Africa’s Albertine Rift Valley, an area 

293 containing the highest vertebrate biodiversity on the African continent (Plumptre et al. 2007). 

294 Elevations in MFNP range from 620 m at the shore of Lake Albert to nearly 1,300 m in the 

295 southeast. The park experiences two rainy seasons (March – June and August – November), with 

296 an average annual rainfall of 1,100 mm.    
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297 Between 2010 and 2011, the Wildlife Conservation Society conducted bird surveys at elevations 

298 ranging between 650 and 720 m. The Ugandan government recently granted access to MFNP for 

299 oil exploration, and bird survey transects were established relative to the location of oil drilling 

300 platforms with the goal of evaluating the effects of drilling activities on bird populations. The 

301 survey area contained a mosaic of grasslands, dense and open borassus palm (Borassus 

302 aethiopum) woodland, dense and open woodland, and bush habitat. Transects measuring 2000 m 

303 were located in an easterly or westerly direction on either side of four oil-well pads (Appendix 

304 S1: Figure S1). Twenty-one point-count locations were established along each transect. The first 

305 point was located adjacent to the pad perimeter fence and subsequent points were spaced every 

306 100 m. Transects were visited on average once every 2.5 days. Following a 2-minute rest period 

307 upon arrival at a point-count location, the survey team leader (accompanied by 1 or 2 assistants) 

308 recorded all birds seen or heard over a 5-minute period, within an estimated radius of 500 m. 

309 Data collected included time of day, number of each bird species detected, estimated distance to 

310 observer, elevation of point-count location and habitat type. Surveys took place between 

311 February and September of 2010 and March to June of 2011. We selected a subset of the data 

312 that included 62 survey dates between 22 February to 4 May 2010 (corresponding to the early 

313 wet season). During that time, 149 points were visited at least once, with a mean of 23.3 (SD = 

314 3.2) visits per point, resulting in 3464 visits across all points. We assumed that bird populations 

315 were demographically closed during this period.

316 For each sampling location, we classified habitats into a binary variable of either open habitat 

317 (grassland, bush; 72 locations) or woodland (Borassus and other woodland; 77 locations) and 

318 determined the distance to the nearest oil well. In addition, for each visit, we had information on 

319 observer experience. This was evaluated qualitatively by the lead field investigator (AJP) based 

320 on years of experience, ability to identify species by call and accuracy in determining number of 

321 individuals and distance from observation point. Although all observers were competent in 

322 species identification, there was variation in experience and lead observers were ranked from 1 

323 to 3, as most to least experienced, respectively. 

324 To construct a species level detection-non-detection matrix, we considered each visit a sampling 

325 occasion and reduced observations to binary species-level detection-non-detection data. We 

326 excluded species from analysis that had fewer than 5 observations, resulting in a data set of 166 
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327 species. Species were encountered, on average, during 121 (SD 206) visits, at 39 (SD 35) 

328 sampling locations. 

329 We included the binary habitat information (open versus closed) and scaled distance to oil well 

330 as covariates on occupancy probability. Detection probability was modeled as a function of the 

331 experience of the survey team leader; because implementing the DP community occupancy 

332 model was very time consuming and our dataset had many occasions, we calculated the average 

333 experience score of a site across all visits to avoid having to model detection probability as 

334 varying by occasion. The resulting values were almost binary (either 2 or >2); we therefore 

335 included average experience as a binary covariate on detection probability (2 = intermediate 

336 experience; >2 = high experience). We modeled occupancy intercept and regression coefficients 

337 as species specific, with a multivariate DP (see below). We modeled the detection intercept with 

338 a normal random effect and the effect of observer experience on detection as fixed across all 

339 species. We opted for a normal random effect in the detection component because our 

340 simulations indicated that a univariate DP performed poorly at estimating the cluster structure of 

341 a community (see Results). Our model ignored the potential spatial autocorrelation in occupancy 

342 stemming from the surveys recording birds up to 500 m from survey points spaced 100 m apart. 

343 In practice, 94% of all observations in our datasets were within 200 m from the survey point, and 

344 78% were within 100 m. As this case study serves to demonstrate the DP-COM, rather than as an 

345 in-depth analysis of bird community ecology, we felt comfortable with the choice to ignore 

346 spatial autocorrelation.  

347 For parameters of the occupancy component, we used the same priors as described for the 

348 simulation study, except that we set the multiplicative factor for the g-prior on β to 100,000 (to 

349 avoid overly low values in the prior variance-covariance matrix). We used a Normal(0, 10) prior 

350 on the mean and a Gamma(0.01, 0.01) prior on the standard deviation of the normal random 

351 effect on the intercept of probit(p). To improve computational speed, we used an upper bound of 

352 100 for K. Imposing an upper bound on K is an accepted approximation of the infinite-mixture 

353 DP as long as it is set sufficiently high (Reich and Bondell 2011). Upper 95 BCI limits for the 

354 estimate of K were well below 100 (see Results), suggesting our choice of this upper limit did 

355 not affect estimates.
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356 We implemented the models using the same software as for the simulation study. We ran three 

357 parallel chains with 50,000 iterations, of which we discarded 20,000 as burn-in. We thinned the 

358 remaining iterations by 30 (to avoid unwieldy model output). All model parameters except 5  ��
359 and 1  had Rhat<1.5 and in spite of these convergence issues, all species-specific had Rhat� � ∗�  

360 1.1. As we focus on species-level parameters and species similarity, these convergence ≤
361 problems should not impact our inference. Running this model took about 5.5 days on an IBM 

362 HS22 virtual BladeCenter server with an allocation of 3 logical cores using Intel Xenon E5645 

363 processors at 2.4GHz and 1 GB RAM running ESXi. Further, we fit a normal-COM with both 

364 covariates to the data and compared estimates of  and Ni.� ∗�
365 Finally, we explored the information provided by the DP-COM on bird community structure: 

366 First, to provide context for the amount of clustering suggested by the DP models, we compared 

367 the estimated number of clusters as well as the average pairwise clustering rate across the 

368 community to the respective expected values if species clustered at random. We generated these 

369 numbers by simulating draws from a Multinomial distribution with K=100 categories and equal 

370 cell probabilities ( ). The number of categories with at least one species corresponds to � = 1/�
371 the number of random clusters. For each simulated set of cluster identities, we constructed a 

372 pairwise species clustering matrix, as described above. We simulated 3,000 such multinomial 

373 draws. We present the mean, SD, and range for the number of clusters; and the average (across 

374 all species) proportion of iterations that two species fell in the same cluster. Further, we 

375 contrasted average pairwise clustering rate of all families with at least 5 member species against 

376 community-wide average pairwise clustering rate, to investigate whether closely related taxa 

377 tended to respond to covariates more or less similarly than the entire community.

378

379 Results

380 Species in the simulated data sets occupied, on average (across species, iterations and scenarios), 

381 17.06 of the 35 sites (average range: 9.23 – 24.87).  They were detected, on average, 20.43 times 

382 (average range: 8.75 – 34.17) and at 12.71 sites (average range: 5.98 – 20.01). Across scenarios, 

383 for the DP-COM we excluded between 1 and 13 of the 50 iterations due to convergence 

384 problems; the number of excluded iterations increased with increasing number of parameters m 

385 and decreasing among-cluster variation ω. In comparison, for the normal COM we excluded 
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386 between 0 and 9 iterations due to convergence issues (Appendix S2: Table S1). When using the 

387 customary cut-off of  for the normal COM, this number rose to between 0 and 23 Rhat ≤ 1.1

388 iterations (Appendix S3).  

389 Community structure, species similarity in simulated communities

390 Bias in estimates of K generally decreased with increasing ω (i.e., with increasing variation 

391 among clusters) and m (i.e., dimensions of the DP) (Figure 1a). For ω = 1, K (true value of 5) 

392 was consistently underestimated, with a median estimate of 1 (m = 1) to 2 (m > 1) clusters. For 

393 almost all other scenarios, K was overestimated, up to . At ω = 5 and , the median � = 12 � ≥ 2

394 estimate of K was consistently at 7, but variability in estimates across iterations decreased with 

395 increasing m. Precision of estimates of K increased with increasing ω (from a maximum CV of 

396 2.38 at ω = 1 to a minimum of 0.29 at ω = 5). There was no evident relationship of the CV with 

397 m. Finally, coverage was nominal or near nominal (at least 93%) for all scenarios with ω < 5 but 

398 dropped to between 80 and 88% for ω = 5 and  (Appendix S2: Table S2).� ≥ 2

399 The rate at which two species were correctly estimated as being in the same cluster (true 

400 clustering rate) ranged from 42% to 76% across scenarios (Figure 1b; Appendix S2: Table S2). 

401 The highest true clustering rate was attained at ω = 1 and m = 1; however, the rate at which two 

402 species were incorrectly estimated to be in the same cluster (false clustering rate) for that 

403 scenario was almost as high (72%), consistent with an average estimate of K=1 for this scenario. 

404 For most other scenarios, true clustering rate was <60%. Only for ω = 5 did the true clustering 

405 rate tend to increase with increasing m, and within ω = 5, only for  did the correct � ≥ 3

406 clustering rate exceed 60%. False clustering rate decreased with increasing ω, ranging from 36% 

407 to 72% at ω = 1, from 21% to 38% at ω = 2, and from 6% to 18% at ω = 5. Only for ω = 5 did 

408 the false clustering rate continuously decrease with increasing m.  

409

410 Occupancy in simulated communities

411 Across all scenarios, the number of sites occupied by a given species was estimated without bias 

412 (Figure 2a), though in some rare species-iteration combinations, bias reached 100%. The median 

413 CV of the number of sites occupied ranged from 9% to 15%; values decreased slightly with 

414 increasing m and decreasing ω. (Figure 2a) The incidence of extreme CVs (at or above 100%) 

415 for specific species-iteration combinations increased with increasing ω. Coverage was nominal 
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416 for all scenarios (Appendix S2: Table S3).

417 Estimates of community level regression coefficients β showed low to moderate absolute bias. 

418 For example, depending on the scenario, the median estimate of the community intercept (true 

419 value of 0) ranged from -0.05 to 0.15, with most scenarios having median estimates <|0.10|. 

420 There were no apparent patterns in bias with respect to m, but bias tended to increase with 

421 increasing ω. Estimates were less precise (i.e., had higher CVs) with increasing m, except for the 

422 community intercept. Coverage was nominal for all parameters and scenarios (Appendix S2: 

423 Table S4).

424 Median bias (across species and iterations) in species-specific regression coefficients  was � ∗�
425 low to moderate. Median bias, as well as the incidence (i.e., particular species-iteration 

426 combinations) of strong bias, increased with increasing ω and increasing m, though the latter was 

427 less pronounced. CVs increased with increasing ω, with the exception of the intercept, where 

428 CVs decreased with increasing ω. There was no discernable relationship between CVs and m. 

429 Coverage ranged from 89% to 97% and increased with increasing ω (see Appendix S2: Figure 

430 S1 for an example plot and Table S5 for details of simulation results).

431

432 Comparison with normal COM in simulated communities

433 Bias and CV for estimates of  were very similar across the DP and the normal COM (Figure 2, ��
434 Appendix S2: Table S6); across scenarios, the DP model tended to have lower median CVs but 

435 only by 1 or 2 percentage points. For β, median bias was similar between both models across 

436 parameters and scenarios, but parameters from the DP model had considerably higher CVs 

437 (Appendix S2: Figure S2, Table S7). For , both bias and CVs were very similar between the � ∗�
438 two modeling approaches (Appendix S2: Figure S3, Table S8). These patterns were the same 

439 when applying the  cut-off to the normal COM results (Appendix S3).Rhat ≤ 1.1

440

441 Other parameters: ω, α and p in simulated communities

442 Detection probability p was estimated with minimal bias (-2% to 1%), 4-5% CV and BCI 

443 coverage between 86% and 97% (Appendix S2: Table S9). Median estimates of the DP 

444 concentration parameter α ranged from 4.29 (ω = 5 and m = 5) to 12.64 (ω = 2, m = 2) (Appendix 

445 S2: Table S10). 
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446 Estimates of ω were most biased for ω = 1 (-28% to -84%). For all other scenarios, relative bias 

447 was low to moderate, ranging from -2% to 16%. The CV of ω increased with increasing ω and 

448 m. Coverage ranged from 87% to 100%, except for ω = 1 and m = 1, where coverage was 0% 

449 (Appendix S2: Table S11).

450

451 Bird case study

452 For 5 out of 300  and one β, R-hat > 1.5; however, all (derived) species-specific regression ��
453 coefficients  had R-hat<1.1. We visually checked chains for the non-converged  and β, � ∗� ��
454 which appeared to be strongly autocorrelated but oscillated around the same average value; we 

455 therefore felt confident to use the estimates. 

456 For the occupancy component of the model (with a multivariate DP for the coefficients of the 

457 probit-linear predictor of occupancy probability), species comprised 27 clusters (SD = 4.16, 95% 

458 BCI 22 - 37; Figure 3). Probabilities of two species clustering together ranged from 0 to 0.92. 

459 The estimate of ω for the full model was 8.60 (SD 1.04, 95BCI 6.85 – 10.98), indicating 

460 considerable variation in regression coefficients among clusters.  

461 The data set contained ten families with at least 5 species, comprising 90 species total. When 

462 looking at pairwise clustering rates for these families, we found that most families showed 

463 clustering probabilities similar to those of the entire community. However, the sunbirds 

464 (Nectariniidae, 5 species) had considerably higher clustering probabilities, whereas the 

465 Cisticolidae (12 species) and the bee-eaters (Meropidae, 5 species) had lower clustering 

466 probabilities (Figure 4). 

467 Species were estimated to occupy between 1 and 147 of the 149 sample sites. We observed 

468 strong effects (i.e., with 95% BCI not overlapping 0) of woodland habitat for 57 species, with 24 

469 negative and 33 positive coefficients. For distance from oil well, 14 species showed strong 

470 negative and 12 species showed strong positive effects (Figure 5). Species with positive 

471 associations with woodland habitat tended to have positive associations with distance to oil as 

472 well (52 species), and vice versa (72 species). 

473 When comparing estimates of  and Ni between the DP-COM and the normal COM, both � ∗�
474 modeling approaches produced very similar results (Appendix S1: Figure S2).
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475

476 Discussion 

477 In wildlife research, DP priors have been used to model genetic population structure (Reich and 

478 Bondell 2011), spatial variation in abundance (Dorazio et al. 2008, Dorazio 2009), spatial 

479 clustering of population trends (Johnson et al. 2013), and clustering of species with respect to 

480 habitat coefficients in the context of community distribution models (Johnson and Sinclair 2017). 

481 Our simulation study showed that a community occupancy model with a DP, instead of the 

482 customary normal random species effect, was able to retrieve aspects of community structure 

483 when differences among clusters and the number of parameters making up the multinomial DP 

484 were sufficient. Applied to data for a bird community, the model led to a considerable reduction 

485 in the number of parameters estimated, grouping 166 species into 27 clusters. This suggests that 

486 detection/non-detection data contain information on the similarity of species in a community that 

487 can be exploited with a DP model. Major shortcomings of the approach were its computational 

488 expense, poor mixing and difficulty with convergence of MCMC chains due to label switching 

489 among clusters, and its reduced performance in retrieving community structure when cluster 

490 parameters were similar and/or few parameters were used in the DP. These drawbacks may 

491 appear particularly off-putting given that there are no a priori tests that would indicate whether 

492 the existence of, and differences among, clusters warrant exploring a “costly” DP-COM. 

493 Moreover, the customary model with a normal random effect performed similarly to the DP-

494 COM, even when applied to data from a clustered community, suggesting that a normal random 

495 effect is flexible enough to capture variation in parameters that do not follow a normal 

496 distribution. For analyses focused on community and species-level responses in occurrence 

497 (and/or detection) to covariates, or simply the estimation of occupancy probabilities in the 

498 absence of covariates, we recommend the more efficient normal COM. Only the DP-COM, 

499 however, returns estimates of community structure and species similarity in their response to 

500 covariates; for analyses aimed at testing hypotheses regarding these measures, the additional 

501 time investment needed to fit a DP-COM seems worthwhile. 

502

503 Factors affecting the performance of the DP-COM

504 We found that both the variability among clusters and the dimensionality of the DP affected the 

505 ability of the model to retrieve information on community structure. Median bias in K, the 
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506 incidence of large bias and the incidence of large CVs all declined with increasing number of 

507 dimensions of the DP; when variation among clusters was high (ω = 5), increased dimensionality 

508 also led to higher true and lower false clustering rates. Across levels of among-cluster variation, 

509 univariate DPs did the worst in terms of clustering rates and estimating K. All of this indicates 

510 improved ability of the model to identify cluster identity of species with increased 

511 dimensionality. Estimates of community structure may not be reliable when only a single 

512 dimension is considered. As such, the DP-COM may be more useful for data sets with sufficient 

513 replication to support modeling of multiple covariates. It is possible, however, that if variation 

514 among clusters is stronger than what we considered in the simulation, a univariate DP may be 

515 able to identify clusters. Even though the effect of dimensionality on the performance of 

516 clustering algorithms is known (e.g., “curse of dimensionality”; Bellmann, 1957) and the DP is a 

517 widely used Bayesian clustering algorithm outside of wildlife research, to our knowledge this is 

518 the first study to demonstrate that the performance of the DP model is dependent on the number 

519 of dimensions of the base distribution. 

520 Not surprisingly, we found that the variability among clusters strongly affected the ability of the 

521 DP-COM to estimate the number of clusters in the community, as well as pairwise species 

522 clustering rates. While increasing ω resulted in higher true clustering rates, lower false clustering 

523 rates and lower bias in K, it also resulted in increased bias and CV in most  and  and higher � � ∗�
524 incidences of extreme bias and CVs in Ni. There appears to be a trade-off between improvements 

525 in estimation of community structure and species similarities as a function of cluster 

526 discrimination and the accuracy of other parameters of ecological interest. Regardless, coverage 

527 of these parameters was nominal or near nominal across scenarios. 

528 At ω = 1, the DP-COM was essentially unable to detect cluster structure and, in most iterations, 

529 estimated that all species belonged to the same cluster (regardless, estimates of  and Ni were � ∗�
530 largely unbiased). Further, in our simulation, the actual number of clusters was, on average, not 

531 estimated well (median bias was mostly >40%), and coverage of the true value was <90% for 

532 scenarios that estimated K with the lowest bias (i.e., ω = 5 and ). Both findings contradict � ≥ 2

533 results by Johnson and Sinclair (2017), whose proof of concept simulation for a community 

534 Poisson regression resulted in accurate estimates of K for various values of ω, as long as ω > 0.5. 

535 We implemented the DP on parameters of the occupancy component of the DP-COM, which is 
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536 binary and partially latent (only for sites where the species is detected, do we observe occupancy 

537 state). It is conceivable that the differences between clusters need to be more pronounced, and/or 

538 that it is generally more difficult for the DP algorithm to retrieve community structure for a 

539 binary partially latent process. Based on these results, we suggest interpreting the absolute 

540 estimated number of clusters with caution and focus instead on estimates of species similarity. 

541 We only explored two factors likely to affect the performance of the DP-COM, though many 

542 other factors may be influential. Particularly, we imagine that the total community size and the 

543 cluster-to-size ratio (i.e., whether communities consist of many small or few large clusters) may 

544 affect the estimation of community structure: we would expect that more clusters should improve 

545 estimation of parameters governing G0, and more species per cluster should improve estimates of 

546 cluster-level parameters. Additional simulations with communities of 60 species distributed 

547 across 5 or 10 clusters (i.e., representing a scenario with a higher species-to-cluster ratio, and one 

548 with the same ratio as in our main simulation but with more data) somewhat support these 

549 expectations, with community β coefficients having slightly lower CVs in the scenario with more 

550 clusters, and species-level coefficients (which are derived from cluster-level estimates) having 

551 slightly lower CVs when there were more species per cluster (Appendix2: Table S12). Having a 

552 larger community reduced bias in community and species coefficients, regardless of the 

553 community structure. Neither scenario, however, suggested that using the DP over a normal 

554 COM led to greater improvements in either precision or bias of estimates when communities 

555 were larger (Appendix S2: Figure S4 and S5). Factors of study design, such as spatial and 

556 temporal repeats, as well as the amount of data available for each species have been shown to 

557 affect performance of occupancy models (MacKenzie and Royle 2005, Pacifici et al. 2014) and 

558 may affect the DP-COM as well. Due to the computational cost of the DP-COM, however, we 

559 were unable to explore these additional dimensions in more depth. 

560

561 Accuracy of parameter estimates

562 Whereas estimates of typical parameters of interest (number of sites occupied, coefficients of the 

563 probit-linear predictor of occupancy) were, on average, unbiased under both modeling 

564 approaches, bias and CV were high in some individual species-iteration combinations, 

565 particularly in estimates of species-specific coefficients (Appendix2: Figure S1). Even though 

566 the DP-COM adequately reflected the clustered nature of the simulated communities, it did not 
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567 consistently improve bias and precision of estimates. We performed some exploratory post-hoc 

568 analyses (results not shown) that showed that specific species-iteration combinations had 

569 consistently high CV and bias across both modeling approaches, suggesting that some 

570 characteristic of the data was responsible for poor estimates. We investigated whether instances 

571 of large CVs and bias were associated with sparse data, but patterns were inconclusive. We do 

572 not have data on bias and precision of parameter estimates under the two modeling approaches 

573 fit to data generated under a normal COM (i.e., a non-clustered community), but we suspect that 

574 the incidences of high CVs and bias are related to the clustered structure of the community. 

575

576 Sensitivity to prior 

577 It has been shown that the estimate of the concentration parameter α, which determines the 

578 number of clusters, is sensitive to its prior (Dorazio 2009). Following the principle of preferring 

579 parsimonious models, we adopted the prior by Johnson and Sinclair (2017), which allows for a 

580 wide range of values of K but favors smaller values and did not appear to affect estimates of K in 

581 their simulation. Nonetheless, under most scenarios, we observed positive bias in . Because of �
582 the time-intensive nature of the DP model, thorough testing of sensitivity of  and, by extension, �
583 , to priors was beyond the scope of this study. For a small subset of simulations, however, we �
584 explored whether a negative-exponential prior, which puts even more weight on fewer clusters, 

585 would reduce the positive bias in , but found no improvements. Dorazio (2009) suggested a �
586 Gamma(a, b) prior where a and b are chosen depending on n (the number of species in the data 

587 set), so that the prior on α reflects a discrete-Uniform(0, n) prior on K. On the other hand, West 

588 et al. (1994) suggest a static Gamma(3.5, 0.5) prior allowing for a wide range of possible values 

589 for K, with low probability at 0 and n. Studies employing the DP-COM should evaluate the 

590 influence of the choice of prior for α on main quantities of interest.  

591

592 Structure and habitat associations in the MFNP. bird community

593 We found considerable structure within the MFNP bird community, with 166 species clustering 

594 into 27 groups regarding their associations with habitat type and distance to oil well. Some 

595 species pairs showed similarity scores >0.90, being in the same cluster virtually all the time. 

596 Across the community, we found that occupancy of more species was significantly related to 
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597 habitat type (open versus woodland) than influenced by distance from oil wells. It is conceivable 

598 that the effect of oil drilling operations on bird occurrence may be temporally limited to when 

599 wells are active (Fuda et al. 2018). Our analysis of occupancy across multiple months may mask 

600 any such temporal effects and only show effects of this factor in cases of strong species 

601 responses. Coefficients of the two predictors of occupancy were positively correlated, indicating 

602 that an increasing preference of woodland habitat corresponded with greater avoidance of oil 

603 wells. No species that had strong negative associations with distance to oil wells had strong 

604 positive associations with woodland habitat; similarly, none of the species strongly preferring 

605 woodland habitat had significant negative associations with distance to oil well. This suggests 

606 that birds with a preference for more closed habitat tend to be more sensitive to habitat 

607 disturbance, a conclusion reached for birds and other taxa in a recent meta-analysis (Keinath et 

608 al. 2017). 

609 The mechanisms determining how closely related species, possibly with similar morphologies 

610 and diets, can coexist has been an ongoing debate in ecology for decades (Hutchinson 1959, 

611 Gotelli 2000, Graham et al. 2004). Many studies have found that sister taxa commonly occupy 

612 different ecological niches and that co-occurring species are generally more distantly related 

613 (e.g., Silva et al. 2014), while others argue that phylogeny begets morphological similarity and, 

614 thus, higher likelihood of niche overlap (Gonçalves-Souza et al. 2014). These patterns are of 

615 interest in conservation biology as well, with recent studies exploring the effect of phylogeny 

616 and other traits on species susceptibility to disturbance (Nowakowski et al. 2017). When 

617 comparing within-family clustering rates – a measure of how similarly species in the present 

618 study use space – to average similarity of the community, only the sunbirds stood out as more 

619 similar than average. The tropical sunbirds are largely nectivorous but also consume fruit and 

620 insects and, thus, generally considered to be forest/woodland species where their specialized 

621 food sources are likely more plentiful (Cheke et al. 2019). The five species represented in our 

622 sample demonstrated significant niche conservativism, with consistently strong positive 

623 associations with woodland habitat and distance to oil (only one species, the Marico sunbird 

624 Cinnyris mariquensis, had 95BCI overlapping 0 for the latter). Thus, based on our findings the 

625 sunbirds represent an example of where “phylogeny begets niche overlap”, and possibly of low 

626 response diversity with respect to anthropogenic influence (oil wells). Of course, habitat 

627 partitioning among these species may very well happen on scales other than the one measured in 
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628 this study. Even though species-specific coefficient estimates were generally very similar 

629 between the DP and the normal COM, sunbird coefficients were more similar to each other under 

630 the DP-COM than the normal COM, suggesting that the approach is better able to represent 

631 similarities among species (Appendix S1: Figure S2). 

632 In contrast, members of the Cisticolidae and Meropidae (bee-eaters), with 12 and 5 

633 representative species respectively, demonstrated clustering probabilities that were lower than 

634 average, and only slightly higher than expected under random clustering. Thus, they exemplify 

635 the “niche differentiation among closely related taxa” argument. Bee-eaters are considered 

636 habitat generalists, occupying both forests, edge and open habitat; their aerial behavior is 

637 generally independent of vegetation type (Fry 2019). Cisticolidae is a broad taxon that includes 

638 Old World warblers and other allies that occupy a range of habitats including forest, open 

639 woodland, scrub and grassland (Ryan 2019). This example illustrates the potential usefulness of 

640 the DP-COM for addressing ecological questions of species coexistence, estimating similarity of 

641 species while fully accounting for imperfect species detection and uncertainty in coefficient 

642 estimates. 

643

644 Conclusion

645 Dirichlet process distributions provide a flexible tool to model latent structure in wildlife 

646 communities and populations. Our DP-COM is a straight-forward extension of popular 

647 community occupancy models (e.g., Zipkin et al. 2009, Ruiz-Gutiérrez et al. 2010, Sollmann et 

648 al. 2017) and can be implemented in JAGS, a software that has become increasingly popular 

649 among ecologists and wildlife researchers (Kéry 2010, Kéry and Schaub 2012). Implementing 

650 the DP-COM in JAGS was computationally much more expensive than the normal COM – for 

651 the bird data set, the difference was on the scale of hours (normal COM) versus >5 days (DP-

652 COM). Based on our simulation study, run time increases non-linearly with the addition of 

653 species to the data set (from 15 minutes for a 30-species community to 1.5 hours for a 60-species 

654 community). Mixing of chains was slow, suggesting that longer chains, and thus more 

655 computation time, would be beneficial. Whereas implementation of these models can be 

656 accelerated by using a custom MCMC algorithm, and likely also by using the reversible jump 

657 MCMC capacities of NIMBLE (de Valpine et al. 2017), they still remain computationally 

658 involved (Johnson and Sinclair 2017). This complicates thorough evaluation of model 
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659 performance under different conditions via simulations and makes models less accessible to 

660 practitioners. Even though the DP model has fewer parameters than the normal COM, the 

661 improvement in precision of estimates was marginal or non-existent, and in spite of the distinctly 

662 clustered simulated community, the normal COM returned estimates of ecological parameters 

663 that were, for the most part, as accurate and precise as those of the DP-COM. For studies where 

664 estimates of occupancy and associated covariate coefficients are the main focus, our results thus 

665 suggest the much faster and better-mixing normal COM provides reliable results. We did not test 

666 whether joint prediction of community occupancy at new sites benefits from the DP-COM, and 

667 this warrants further investigation for studies where prediction is a key objective. The DP-COM 

668 may be the better approach in situations where researchers would otherwise resort to a priori 

669 grouping of species. Especially for sparse data species, inference on the species level is affected 

670 by how groups are defined (Pacifici et al. 2014); under a DP-COM, estimates of parameters for 

671 such species will represent the average over possible group associations and thus avoid 

672 subjectivity in choosing a certain grouping. The main advantage of the DP-COM is the 

673 information about community structure and species similarity with respect to occupancy 

674 predictors that the normal model cannot provide directly. We present an example of how this 

675 information can be used to address questions of ecological relevance with the Uganda bird 

676 example. 

677 Our model development only considers the simplest case of a DP model, in which no 

678 information on species cluster membership is available. The DP model can be extended to 

679 include covariates that can inform the probability of cluster membership (Johnson et al. 2013). In 

680 the context of community occupancy models, inclusion of potential clustering covariates enables 

681 testing whether species attributes such as taxonomy or functional traits explain community 

682 structure. As such, in spite of its drawbacks, the semi-parametric DP-COM holds potential as a 

683 flexible modelling approach in situations where community structure and species similarities are 

684 of primary interest.
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835 Figure legends

836 Figure 1: Estimated number of clusters K (a) and pairwise clustering rates (b) from a Dirichlet 

837 Process (DP) community occupancy model used to analyze data simulated under different levels 

838 of cluster distinctiveness (ω) and different number of coefficients in the probit-linear predictor of 

839 occupancy (corresponding to dimensions of the multivariate DP), m. For a), violin plots depict 

840 posterior modes of K across iterations; red line shows the data generating value. For b), violins 

841 show the average number of MCMC iterations during which two species were estimated to be in 

842 the same cluster when in the simulated data they were in the same cluster (blue) and when they 

843 were in different clusters (orange). In both panels, dots represent the median across iterations.  

844
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845 Figure 2: Bias (a) and coefficient of variation, CV, (b) of estimated number of sites occupied by 

846 species from community occupancy models using either a Dirichlet Process (DP) or a normal 

847 species level random effect. Models were used to analyze data simulated under different levels of 

848 cluster distinctiveness (ω) and different number of coefficients in the probit-linear predictor of 

849 occupancy (corresponding to dimensions of the multivariate DP in the DP COM), m. Violins 

850 represent estimates across species and iterations in a given scenario. Plot y-axes capped at -1/1 

851 (a) and 0/1 (b) for aesthetic reasons. 

852

853 Figure 3: Probability of joint cluster membership for 166 birds in Murchison Falls National Park, 

854 Uganda, estimated from a Dirichlet Process community occupancy model, based on coefficients 

855 in the probit-linear predictor of occupancy probability, including the effect of habitat type (open 

856 versus woodland) and distance from oil well. Both axes represent species identity and color 

857 gradient expresses the probability of joint cluster membership.

858

859 Figure 4: Pairwise probabilities of joint cluster membership (similarity), estimated from a 

860 Dirichlet Process community occupancy model, for 10 bird families with at least 5 species 

861 observed during a survey in Murchison Falls National Park, Uganda (number of species given 

862 above error bars). Dots: average probabilities of joint cluster membership across species; error 

863 bars: 5th and 95th percentiles; black line/grey rectangle: mean and 5th and 95th percentile of 

864 probabilities of joint cluster membership for entire community; red line: maximum clustering 

865 probability observed when simulating random clustering. 

866

867 Figure 5: Beta coefficients for effect of woodland habitat, β(habitat), and distance to oil well, 

868 β(Oil), on occupancy probability for 166 birds surveyed in Murchison Falls National Park, 

869 Uganda, estimated with a Dirichlet Process community occupancy model. Effects considered 

870 strong when 95% Bayesian Credible Intervals did not overlap 0.
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